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ABSTRACT

Overdiagnosis is defined as the diagnosis of an asymptotic cancer that would not have presented clinically
in a patient’s lifetime in the absence of screening. Quantifying overdiagnosis is difficult, since it is impossible
to distinguish between a cancer that would cause symptoms in the patient lifetime and the ones that would
not. In this study, a mathematical framework is developed to estimate the lifetime overdiagnosis and cancer
mortality risks associated with cancer screening policies. We also develop an optimization model to extract
screening policies with minimum overdiagnosis and lifetime breast cancer mortality risk. The proposed opti-
mization model is highly nonlinear with complex structure. Therefore, we linearize the optimization model
by introducing new decision variables and restructuring the equations to solve it optimally. We utilize exist-
ing data on breast cancer for average-risk women and evaluated mammography screening policies in terms
of their associated lifetime overdiagnosis and breast cancer mortality risk. Optimal policies with minimum
overdiagnosis and mortality risks are derived. The optimal policies outperform the existing in-practice poli-
cies by recommending more frequent screenings at younger ages, as the cancer is more aggressive and the
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remaining life expectancy is higher for younger patients.

1. Introduction

Since the advent of cancer screening technologies, a substantial
reduction in cancer mortality has been observed, and organized
screening programs have led to a shift from late-stage diagno-
sis to early-stage detection. Early detection of cancer enables a
broader range of treatment options, less intensive chemotherapy
with fewer side-effects, as well as higher survival rates. How-
ever, early detection of cancer through screening also leads to
detection of cancers (mostly cancers in early stages) that are
not life-threatening and would not cause any problem in the
patients’ lifetimes. Therefore, there is a trade-off between mor-
tality reduction and risk of overdiagnosis due to early detection
in any screening program.

Overdiagnosis is defined as the diagnosis of a cancer through
screening that would not have presented clinically in a woman’s
lifetime in the absence of screening (Welch and Black, 2010).
Overdiagnosis, although known as the major harm associated
with cancer screening, has not been investigated thoroughly.
In this study, we address the overdiagnosis issue in preven-
tive healthcare since it can adversely affect people’s lives and
cause physical and psychosocial harms by unnecessary labeling
patients with a lifelong diagnosis and unneeded treatments and
surveillance (Carter et al., 2015). Overdiagnosis also causes eco-
nomic harm by unnecessarily contributing to the rising cost of
healthcare (Black, 2000; Welch and Black, 2010). Note that over-
diagnosis is different from false positive. Overdiagnosis occurs

when a disease is diagnosed correctly, but the diagnosed can-
cer will not cause harm, suggesting that the treatment for the
disease is not needed. False positive is an initial test result that
suggests the presence of a disease, but later is proven not to be
present (with additional testing). There are two possible expla-
nations for overdiagnosis: (1) the cancer never progresses (or,
in fact, regresses); or (2) the cancer progresses slowly enough
that the patient dies from a competing cause before the cancer
becomes symptomatic (Black, 2000). In other words, overdiag-
nosis occurs when “very slow” growing cancers (more precisely,
at a slow enough pace that individuals die from something else
before the cancer ever causes symptoms) are detected. The sec-
ond explanation incorporates the interaction of three factors: the
tumor size at detection, its growth rate, and the competing risks
of mortality for the patient. Thus, even a rapidly growing can-
cer may still represent overdiagnosis if detected when it is very
small or in a patient with limited life expectancy (Jorgensen and
Gotzsche, 2009). Figure 1 shows the case when overdiagnosis
occurs. As it is not possible to distinguish between lethal and
harmless cancers, all detected cancers are treated, and overdiag-
nosis and overtreatment are therefore inevitable.

Quantifying overdiagnosis, however, is challenging because
it is impossible, at the time of diagnosis, to distinguish between
an overdiagnosed cancer and one that will become clinical later.
There are various studies that quantify overdiagnosis resulting
from cancer screenings. The magnitude of overdiagnosis esti-
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Figure 1. Representation of overdiagnosis in cancer screening.

mates varies widely from one study to another. For example,
according to Welch and Black (2010), 25% of mammographi-
cally detected breast cancers are overdiagnosed. However, based
on Jorgensen and Getzsche (2009), one in three breast cancers
detected in publicly organized mammography screening pro-
grams is overdiagnosed. In an earlier study in 2008, Duffy et al.
(2008) estimated the breast cancer overdiagnosis risk to be 39%.
However, in a later study (Duffy and Parmar, 2013) after a pro-
longed follow-up of a screening program in England and Wales,
Dufty and Parmar reported an overdiagnosis risk of 7-8% for
a biennial screening schedule. They found this estimate to be
more plausible than their own previous estimate of 39%.

Most of the studies quantifying cancer overdiagnosis are
cohort studies or randomized controlled trial (RCT) follow-
up studies which estimate the overdiagnosis risk based on the
excess incidence in a screened population compared to an
unscreened reference population during the screening period
(Welch and Black, 2010; Jorgensen and Getzsche, 2009; Dufty
et al.,, 2008; Dufty and Parmar, 2013). However, the downside of
these studies is the substantial time and resource requirements
due to the need to follow-up observations over a long period of
time in order to get a reliable overdiagnosis estimate. In addition,
a desirable RCT or observational study must compare screened
and unscreened patients with the same underlying risk factors
and representing the same historical period and region, from
the onset of screening until death (which can be over 30 years).
Therefore, many of these studies are subject to selection bias and
confounding. Another approach in estimating overdiagnosis is
through mathematical modeling or simulation. There are a few
relevant studies in the literature that propose a mathematical
framework/simulation for estimating overdiagnosis risk. Davi-
dov and Zelen (2004) developed a mathematical model to esti-
mate the probability of overdiagnosis for cancer screening. They
applied their model to hypothetical early detection programs
for prostate cancer. Gunsoy et al. (2014) developed a Markov
simulation model for the evaluation of mammography screen-
ing policies in a cohort of British women born in 1935-40.
They evaluated nine different screening strategies to quantify
the impact of the screening frequency (annual and triennial),
starting and ending ages on breast cancer mortality reduction
and overdiagnosis. Seigneurin et al. (2011) developed a stochas-
tic simulation model and an approximate Bayesian computation
approach to quantify overdiagnosis in French women aged 50-
69 years old.

In this article, we propose a mathematical framework to esti-
mate a patient’s lifetime overdiagnosis and cancer mortality risks
for different screening policies. We apply our estimation model
to breast cancer data and evaluate a wide range of policies for
an average-risk woman, given that she will develop breast can-
cer in her lifetime. Compared to previous studies, our estima-
tion model provides a more flexible framework for modeling
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different uncertainty sources such as cancer sojourn time (i.e.,
the time interval between the onset of a detectable preclinical
cancer and the point when the cancer progresses to the clinical
stage, causing symptoms). Unlike previous studies with Marko-
vian assumptions (Gunsoy et al., 2012, 2014), in the proposed
approach the distribution of sojourn time is not limited to expo-
nential and can take any plausible form. Note that the assump-
tion of exponential sojourn time has some serious limitations:
(1) an exponential distribution has a mode at zero that implies
an instant transition from preclinical cancer to clinical cancer;
(2) an exponential distribution has a fast decaying tail, which
does not adequately account for slow growing tumors; and (3)
the memoryless property of the exponential distribution implies
that the sojourn time and remaining sojourn time upon cancer
detection through screening have the same distribution, which
does not capture the real characteristics of cancer growth. In our
model, however, the sojourn time can take any acceptable form;
e.g., lognormal distribution that has been identified in the liter-
ature (Peer et al., 1993).

Although overdiagnosis and overtreatment are inevitable in
any screening program, tailoring screening strategies can con-
trol the probability of overdiagnosis, and thus decrease the neg-
ative effects associated with overdiagnosis and overtreatment.
Recently, there have been several studies on the design and
optimization of screening and surveillance policies for differ-
ent types of cancers with respect to different health outcomes,
such as remaining life expectancy, mortality risks, false posi-
tives, etc. For example, Maillart et al. (2008) evaluated a broad
range of screening mammography policies and generated a set
of efficient policies, measured by a lifetime breast cancer mortal-
ity risk metric and expected number of mammograms. Madadi
et al. (2015) developed a partially observed Markov chain to
evaluate a broad set of static and dynamic policies in terms of
breast cancer mortality risks and total quality-adjusted life years
(QALYs). Erenay et al. (2014) identified optimal individualized
colonoscopy screening and surveillance policies with the objec-
tive of maximizing QALY for colorectal cancer care. Harms due
to cancer screening have also been addressed in previous stud-
ies. For example, Ayer et al. (2012) reported the expected num-
ber of false positives, and expected number of mammograms (to
quantify the disutilities of screening, such as pain, distress, etc.)
for different screening mammography policies. However, none
of these studies considered overdiagnosis, the most salient risk
of screening, in their analyses. In this article, we propose an opti-
mization model to simultaneously minimize a patient’s lifetime
risk of breast cancer overdiagnosis and breast cancer mortality
risk. We use overdiagnosis and mortality risks as the objective
functions in our analysis, since overdiagnosis and breast cancer
mortality reductions are known to be the most important harm
and benefit of screening, respectively.

The remainder of this article is organized as follows. In
Section 2, the proposed models for quantifying cancer over-
diagnosis and mortality risk, as well as the optimization model,
are presented. Restructuring and linearization of the proposed
model are also presented in this section. Section 3 presents the
data sources and parameter estimates for our numerical stud-
ies. In Section 4, numerical studies and results for breast can-
cer mammography screening are presented. Moreover, optimal
policies with minimum overdiagnosis risk and breast cancer
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mortality risk are obtained. Finally, Section 5 summarizes the
findings and suggests future research opportunities. Note that,
throughout the article, we assume that patients comply with the
screening policies perfectly.

2. Mathematical formulation

In this section, we first present our mathematical framework for
estimating lifetime cancer overdiagnosis and mortality risks for
a woman, given that she develops breast cancer in her lifetime.
Then, the optimization model developed based on the overdiag-
nosis and mortality risks formulations is presented in Section
2.2.

2.1. Estimation model

In the proposed estimation model, we incorporate uncertainty
in the onset of detectable preclinical cancer, variation in the can-
cer sojourn time, and competing causes of death. The goal is to
develop a mathematical framework to quantify cancer overdiag-
nosis and mortality risks associated with screening strategies.
The following is the list of notations used in the problem for-
mulation.

Notation

m  Number of screening examinations in a pre-
scribed screening policy.

T Screening schedule <t = {1, 11, ..., Tmt1}
where t7;5. (i=1...m) are the decision
variables representing the age at which a mam-
mogram should be prescribed. Note that 7y and
Tyt are the fixed beginning and ending points
of the patient’s follow-up period and therefore
are not decision variables. No screening is
scheduled at ages 79 and 7,,.41.

T Random variable representing the patient’s age
at the onset of the detectable preclinical cancer.

S Random variable representing the cancer
sojourn time. Note that random variables S
and T are dependent because, depending on
the age that cancer onsets, the growth rate and
therefore the cancer sojourn time are different.

S;  Random variable representing the remaining
cancer sojourn time (also known as forward
recurrence time) measured from age ;.
Patient health state space, E ={CESC,CC},
where CE SC, and CC represent a cancer-
free individual, a patient with screen-detected
breast cancer, and a patient with clinical (symp-
tomatic) breast cancer, respectively.

R Random variable representing the remaining
life years of a patient in health state £ € & at
age u. Note that, for the purpose of brevity, we
denote the remaining life years at age 7; by R?.
Probability density function of cancer onset
time T.

[x]

Sfr(®)

Conditional probability density function of the

cancer sojourn time, given that the cancer pre-

clinical onset is at age T

Conditional probability density function of the

forward recurrence time measured from age 7;,

given that the cancer preclinical onset is at age

T.

Conditional probability density function of R},

the remaining life years of an individual in

health state &, given that the patient has sur-

vived to age u.

Conditional cumulative distribution function

of R, the remaining life years of an individual

in health state &, given that the patient has sur-

vived to age u.

a; Sensitivity of mammography (probability of
detecting a cancer when it is present) at age 7;.

@, Lifetime overdiagnosis risk associated with
screening schedule 7.

®; Lifetime breast cancer mortality risk associated

with screening schedule 7.

Lifetime breast cancer mortality risk associated

with screening schedule v when the cancer is

diagnosed through screening.

Lifetime breast cancer mortality risk associ-

ated with screening schedule 7 when the cancer

becomes symptomatic.

Probability that a patient survives to age 7,

given that she has survived to 7;_; when the

cancer onset is at age £.

Probability that a cancer with onset at age ¢ has

not become symptomatic up to age 7;, given

that it was not symptomatic at age 7;_;.

gsi7 ()

gé\T(Sa t)

hi(r)

H; (1)

B, Tj-1, Tj)

y(t, Tj-1, 7))

Note that random variable T is dependent on the conditional
remaining life years of a patient (R(]?F , R?C, and R?C), since know-
ing the cancer onset time gives us information about patient’s
age and the expected remaining life years. However, S is inde-
pendent from the patient’s conditional life years, since know-
ing the sojourn time does not provide information on how long
the patient lives. Remaining sojourn time can extend to after
patient death. The case that the remaining sojourn time exceeds
the patient’s remaining life years is when overdiagnosis happens.
In addition, the three random variables, R?F , R?C, and R]C-C, are
conditionally dependent, since the three health states CF, SC,
and CC are mutually exclusive, and knowing the patient’s state
and its associated life years provides information about life years
associated with the other two states. For example, if we know
that a patient with clinical cancer (in state CC) lives for 15 years
and then dies from breast cancer (RJC.C = 15), it means that the
patient will not die from other causes in the next 15 years, so
R§F > 15.

2.1.1. Lifetime overdiagnosis risk

In the case of overdiagnosis, the cancer is detected through a
screening examination and treatment starts upon cancer detec-
tion. However, if the breast cancer was not detected through
screening, the patient would have died from a competing cause
before the breast cancer grows to the clinical stage. In other



words, the cancer grows slowly enough that the patient would
die from a cause other than breast cancer before the cancer
became symptomatic.

Assume the preclinical cancer onset T =t occurs in inter-
val[ti_1, i)sie,t € [tio1, T),i = 1,2, ..., m + 1.Let D;; be the
event that the cancer is diagnosed at the j'* screening (at age
Tj, j=1i,i+1,...,m), given that T =t € [1;_y, 7;). Therefore,
the conditional probability of overdiagnosis (w;;(t)) is the prob-
ability that the patient’s remaining cancer sojourn time (S;) is
greater than the patient’s remaining life years in the absence of
cancer (RJC-F ) at the time of cancer detection (z); i.e.,

w;j(t) = Pr(S; > RSF|T =1, Dy) = fo g (s. 1) - HF (s)ds.
(1)

Note that the remaining life years of a cancer-free patient are
independent of the cancer onset and remaining sojourn time.
The upper bound of the remaining sojourn time is infinity
(+00), implying that it is possible that the cancer would never
advance to the clinical stage or show symptoms. In addition, the
conditional probability density function of the cancer sojourn
time (gs7(s)) and the conditional probability density function
of the forward recurrence time (the remaining sojourn time,
gé‘T (s, t) at age 7;) are related through the following equation.

G t) =Pr(S=1—T+s|S> 1= T,T =t)

_ gr(tj—t+9)

Ggr(tj — 1)
—t
= _g—5|r(u ) , >0, <u<7ty, (2
Ggr(Tj —1)

where u = 7; + s is the age at which the cancer becomes symp-
tomatic and ES‘T (.) is the survival function of the cancer sojourn
time when the cancer onsetisat T = ¢.

In addition, diagnosing the cancer at age 7; through screen-
ing implies that (1) the cancer has not become symptomatic yet;
and (2) the patient has survived (has not died from other causes)
to age 7;. Let R°F be the patient’s life years when the patient dies
from other causes of death. The probability that the patient does
not die from other causes before age 7}, given that she has sur-
vived to age 7;_i, is given in Equation (3); and the probability
that cancer with onset ¢ € [7;_;, 7;) has not developed to a clin-
ical stage at age T; yet (i.e., the cancer sojourn time is greater
than t; — ¢, Figure 2), given that the cancer had not developed
to a clinical stage up to age 7;_, is given in Equation (4).

Pr(R°F > ;)

B, Ti1,T) = ————. (3)
J=b "]
PI'(RCF > Tj—l)
pe Tj — t <
Time
+ < + - *-------- >
To Tq Ti—1 t Ti Tj_1 Tj T
1
Onset of Cancer Symptomatic
preclinical Detection Cancer
cancer

Figure 2. Representation of a hypothesized screening policy, cancer onset and
detection.

IISE TRANSACTIONS ON HEALTHCARE SYSTEMS ENGINEERING . 5

Pr(§>rt;—T|T =1)
Pr(§>7; 1 —T|T =1)

Gr(tj —t)
ES\T(Tj—l —t)
(4)
Note in the case that j =i, B(¢, tj_1,7;) and y (¢, 7j_1, 7))

reduce to % and Pr(S > t; — t), respectively. In addition,

B(t, Tj_1, Tj) is a function of t only when j = i.

Diagnosing a cancer with onset in the i*" screening inter-
val at the j'" screening (j > i) implies that the cancer was
missed in all previous screenings (i, (i + 1), ..., (j — 1))
and then detected at the j" examination. Moreover, if the cancer
is detected at the first screening scheduled after its onset (i = j),
the probability of cancer detection is equal to the sensitivity of
the screening test at age 7; (i.e., ;). Therefore,

y(tv ijls T]) =

.
J=1 (5)
j> i

_ 1%
PI’(DU) {Otj]_[l];,-l(l —Olz),
In addition, assume that D; is the event that the cancer is diag-
nosed through screening, given that its preclinical onset is in
the it screening interval. Then, D; = U D;; s and since D ’s are
mutually exclusive events, the probab111ty that a cancer w1th pre-
clinical onset in the it interval is diagnosed through screening
is

Pr(Dy) = ) Pr(Dy). ©)

j=i

Hence, the probability of overdiagnosis, given that the cancer
onsetisatt € [ti_1, T;), is

(D)

wm—Zmnﬂawathmm

J=t

w;jt), (7)

which calculates the probability that the patient survives and
does not develop any symptoms up to the screening age 7, given
that she had survived and not developed symptoms until z;_i,
the cancer gets detected at the j' screening and, eventually, the
patient dies from a competing cause before the cancer grows to
the symptomatic size.

Since cancer onsets at different intervals are mutually exclu-
sive, the probability of overdiagnosis for screening schedule t =
{70, T1, T2, - . - T, Tm+1} using the law of total probability is

Pr(Djj)
Z Z Pr(D])

i=1 j=i

Q, = /fwmmw

X fT(t)ﬂ(t, Tj-1, 7)Y (E, Tj-1, Tj)

Ti—1

X /Oogéw(sv t) 'HJCF(S)dsdt. (8)
0

2.1.2. Lifetime cancer mortality risk

To calculate the lifetime cancer mortality risk, two cases need
to be considered: (1) when the cancer is diagnosed through a
screening examination; and (2) when the cancer progresses to a
clinical stage and becomes symptomatic in the interval between
two prescribed screening tests. These two distinct cases are con-
sidered because symptomatic cancers, as opposed to screening
detected cancers, are more advanced and may lead to higher can-
cer mortality risk (Vecchiato et al., 2010).
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Suppose that the cancer preclinical onset is in the i
prescribed screening interval; ie., T =t € [1,_1,7;). The
lifetime cancer mortality risks for these two cases are discussed
in the following. Consider the first case when the cancer is
diagnosed at age 7; (the j screening test, j > i). In this case,
the probability that the patient dies from breast cancer is

v/ = Pr(RC < R§") = / HSF () H;C (r)dr. 9)
0

Given that the cancer is detected at the j screening test, the
patient should survive to age 7;. The probability that the patient
does not die from other causes prior to age 7;, given that she
has survived to age 7;_;, is provided in Equation (3). In addi-
tion, detecting the cancer at the j** screening test implies that
the cancer sojourn time is greater than t; — ¢. This is also sug-
gesting that the cancer does not develop any symptoms up to
age Tj_;. The associated probability of this event, as presented
in Equation (4), is y (¢, tj_1, ;). In addition, the probability
that the cancer is diagnosed at the j** screening is presented
in Equation (5). Therefore, using the law of total probability,
the unconditional probability that a screen-detected cancer with
onsett € [1;_1, T;) causes death is

m
Z B(t, Tj—1, Ty (¢, Tj1, T))Pr(Dij)vy’,
j=i

(10)

which incorporates the patient’s survival probability up to age 7},
and the probabilities that her cancer has not progressed to the
symptomatic stage up to screening age 7;, the cancer is detected
through screening and the patient eventually dies from breast
cancer.

Since the onsets of cancer at different intervals are mutually
exclusive, using the law of total probability, the lifetime breast
cancer mortality risk for the first case is

m m
Or1 =Y Y Pr(Dy)vy

i=1 j=i
x /'fT(t)ﬂ(t, Tin. )y (t Ty Tdt. (1)

The second case considers the situation in which the cancer
becomes symptomatic. Assume that the cancer becomes symp-
tomaticatageu € (tj_1, 7;], j=i+1, ..., m+ L. Inthis case,
the conditional breast cancer lifetime mortality risk at age u is

oo
vy(u) = Pr(RSC < RSF) = / WE(MHSC (rydr. (12)
0

The fact that the cancer gets symptomatic at age u €
(Tj-1, Tj) suggests that it was not detected through screening
tests up to age T;_;, which occurs with probability 1—[11;1 1-
ap). In addition, the probability that the cancer becomes symp-
tomatic atage u € (7;_1, 7;] is ggl}l(u — Tj_1,t) based on Equa-
tion (2). Moreover, similar to the first case, the probability that
the patient does not die from a competing cause, given that she
has survived to age 7;_; (when she received a false negative
screening result), is (¢, ;_;, u) based on Equation (3). There-
fore, the associated cancer mortality risk when the cancer onset
isin the interval [t;_;, 7;), and the cancer becomes symptomatic

at age u in the interval (z;_1, 7;), j=i+1,...,m+ 1is

il LT
[Ta-en [ =t 08 o wvatadu, 13
I=i i1

which calculates the probability that the cancer does not get
detected through previous screenings and the probability that
the individual dies from breast cancer when the cancer becomes
symptomatic in the interval (z;_;, ;). Summing over all screen-
ing intervals after the cancer onset interval and unconditioning
on the cancer onset, the cancer mortality risk is

m+1 m+1 j—1

¥ = Z/ fe 3 TT0 =
i=1 Y

i j=itl =i
X / gél_Tl (u—tj_1, )B(t, Tj—1, Wva(u)dudt. (14)
Tjo1

In addition, it is possible that the cancer becomes symp-
tomatic before the first scheduled screening, in the interval
(t, ;). In such a case, the following is the associated cancer mor-
tality risk, which has a similar logic as Equation (14).

m+1

Yo = Z/x fT(f)/ Igsw(u— t)B(t, Ty, u)vy (w)dudt.
i=1 v Ti-1 t

(15)
Equation (15) calculates the probability that the cancer onsets
at time ¢ and it becomes symptomatic at age u, the patient
does not die from a competing cause in the interval (t;_;, u)
(i.e., B(t, Ti_1, u)), and she eventually dies from breast cancer
(v2(w)).
Therefore, the lifetime cancer mortality risk of screening
schedule 7 for a symptomatic cancer is

Or2 = Y1 + V.

Considering both cases of cancer detection, the lifetime can-
cer mortality risk for screening schedule 1 is

(16)

®7: = ®r,1 + ®r,2~ (17)

2.2. Optimization model

In this section, we develop a bi-objective model in which we
simultaneously minimize cancer overdiagnosis and mortality
risk. We propose a mixed integer linear model to minimize a lin-
ear function of overdiagnosis and breast cancer mortality risks
associated with screening policies. For this purpose, we first fix
the value of m, number of screenings, and solve the problem for
the fixed value of m. Then, across all values of m, we choose the
policy that provides the minimum objective function value. The
optimization model for a fixed value of m is given in Model (18).
In the optimization model, for the purpose of ease of practical
implementation, we limit the number of possible interval length
switchings in screening policies. Therefore, the number of times
that a policy can switch from one screening interval length to
another is limited (< N). Moreover, the time intervals between
two consecutive screenings are multiples of a predefined value
8. In addition, since there is medical evidence suggesting that
no screening should take place for older women (Schonberg
et al,, 2009), we define an upper limit for the latest age at which
a patient can undergo a mammogram (7T;). Note that T; is the
end of the decision horizon and is different from ,,,, 1, which is
the maximum age expectancy of an individual. In other words,



Tm+1 is the end of patient’s follow-up period while T is the end
of the decision horizon. In this section, we also assume that o;
is not age-dependent (a; = «, V), since the problem becomes
very complex and extremely difficult to solve optimally when «
is a function of a patient’s age. The proposed optimization model
can then be written as

min (R;, ;) (18a)
st T < Tjg, Vie{l,...,m}, (18b)
m—1
ZI,- <N, (18¢)
j=1
L<M|(tim—1)— (rj—12)|, Vie{l,...,m—1},
(18d)
|t — 1) — (rj—tio)| <ML,  VYjefl,....m—1},
(18¢)
Tj€{to+8, 10+25, ..., T}, Vjie{l,..., m},(18f)
Iy € {0, 1}, Viel{l,...,m—1},
(18g)

where @, and ©, are formulated in Equations (8) and (17)
and represent the cancer overdiagnosis and lifetime mortality
risks associated with screening policy 7, respectively. Constraint
(18b) determines the order of screening decisions. Constraint
(18c¢) ensures that the number of times that a policy switches
from one screening interval length to another is limited to N.
To count the number of times switching intervals occur, we
define binary variable I;, j=1,...,m — 1, which is equal to
0 if two consecutive screening intervals have the same length
(i.e, Tjp1 — Tj = T; — 1j_1), and 1 otherwise. If two consecutive
screening intervals have the same length (i.e, 74, — 7; = 7; —
Tj_1), then Constraints (18d) and (18e) are equivalent to I; < 0
and 0 < MI;. Since I; is a binary variable, this results in I; = 0.
Otherwise, if two consecutive screening intervals have differ-
ent lengths (i.e., (tjy1 — 7;) — (tj — 7j—1) = ¢ # 0), then Con-
straints (18d) and (18e) are equal to I; < Mcand ¢ < MIj, which
results in I; = 1. Therefore, Equations (18d) and (18e) calcu-
late the value of binary variable I;, j=1,...,m — 1. More-
over, M in Equations (18d) and (18e) represents a large num-
ber. Because (7j1; — 7;) — (Tj — Tj—1) < Tjq1 — To, We define
M = 71,11 — 7 in Equations (18d) and (18e), where, as defined
in Section 2.1, 7y and T4 are fixed parameters denoting the
beginning and end points of the follow-up period. Additionally,
Constraint (18f) determines the ages from which the screening
tests should be prescribed, in which § represents the minimum
interval length between two consecutive screening tests.

To solve Model (18), we use a Pareto multi-objective method
to convert the multi-objective model to a single-objective model,
as presented in the following.

aQQT + a®®rs
Constraints (18b)-(18g).

min (19)

where ag and ag are the decision maker’s preference weights for
the overdiagnosis and cancer morality risks, respectively. Model
(19) is nonlinear/nonconvex and the objective function is not
monotone with respect to variables 7;, j=1,..., m, suggest-
ing that Model (19) is difficult to solve directly; therefore, we
develop an equivalent mixed integer linear model which can be
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solved optimally. The following is the list of sets, parameters, and
decision variables introduced in the linearized model.

Sets

I Forie{l,..., m}, the set of all possible times that
screening i can occur

Fj For j € {1, ..., m}, the set of possible times #n such
that cancer onset occurs in interval [n — §, n), prior to
screening j

A; Forje({l,...,m+ 1}, the set of all possible times for

two consecutive screening tests (t;_1, 7;)

For i € {l1,...,m} and n € I';, the set of all possible

times for two consecutive screening tests (7;,_i, 7;) such

that the screening time t;_; is smaller and screening

time 7; is equal to or greater than time n

Y; For je{l,...,m}, the set of possible times
(n, Tj—1, ‘L’j) for two consecutive screening tests
Tji;1 and 7t;, when the cancer onset time is
ne {'L'0+5,...,'L'j}

®; For je{2,...,m}, the set of
(n,tj_1,7j;) for two consecutive
Tji;1 and 7;, when the cancer
ne {'C0+8,...,Tj,1}

possible times
screening tests
onset time is

Parameters

T, Maximum screening age

Q"% The overdiagnosis probability given that cancer onset is
in [n — 8, n), cancer is diagnosed at age £ and previous
screening is scheduled at age k

Cancer mortality risk for the first case (screen-detected
cancer), given that cancer onset is in [n — 8, 1), cancer is
diagnosed at age ¢ and previous screening is scheduled
atage k

Cancer mortality risk for the second case (symptomatic
cancer), given that cancer onset is in [#n — §, n) and can-
cer becomes symptomatic in screening interval (k, £)
where n < k

Cancer mortality risk for the second case (symptomatic
cancer), given that cancer becomes symptomatic before
the first scheduled screening after its onset (i.e., can-
cer onset occurs after age k and cancer becomes symp-
tomatic before age ¢£)

kL
Rn

Uk,(i

n

Vk,l

Decision variables

k¢ 1 if'l,',;l = kand T = ﬂ,
i 0 otherwise,

(Vie{l,...,m}, (k,£) € A))
lifnef{t,1+34,...,1},
0 otherwise,

Vief{l,....m}, ne{ry+6,...,T3})

22}1’ Forje({l,...,m}, ne{rn+54, ..., T;}, the probability
of detecting a cancer at the j screening, given that the
cancer onset is in [n — §, n) and the cancer would even-
tually be detected through screening

z?AnF Forje({l,...,m}, ne {454, ..., T;}, the probability
of detecting a cancer at the j screening, given that the

cancer onset is in [n — 6, n)
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z%? For je{2,...,m}, ne{r+34,..., T}, the probabil-
' ity that a cancer with an onset [n — §, n) is missed in all

screenings which occurred before screening j

For n e {ty+ 4, ..., T}, the probability that a cancer

with onset [#n — §, n) is missed in all screenings

Because screening i cannot occur in {to+34,..., T} \ '
Equation (33) is valid. According to the definition of variables
z%,, v € {OV, MF, MS} and zM?, we have

jon

/. Pr(D;;
N =>" r( J)y" Vie(l,....m,ne{n+6, ..., T}, (34)

Using the definition of the sets, we now state the mathemati- S G
cal representation of the sets.
i={w+i,..., To— (m—i)s}, Vie{l,..., m}, (20)
Ti={t+4, ..., T, — (m— j)s}, Vie{l,...,m}, (21)
Ap={kO)|k=1,tefk+s,....,Ty— (m—1)3}}, (22)
Aj={kO|kefno+(G—D3 .... = (m—j+1é}, Le{k+s, ....,T,— (m—j)d}},
Viel{2,...,m} (23)
Appr ={(k, O) | ke {ro+mé, ..., T}, £ = Ty}, (24)
Al,nZ{(k,Z)|k=t0,€€{n,...,TS—(m—l)S}}, Vi’lEFl, (25)
Ai,n = {(k’g) | ke {TO+(i_1)81""n_8}9 E € {n""vn_(m_i)a}}’
Vie{2,...,m}, neTy, (26)
T ={n k) |k=1,le{n+s....,Ti— (m—1)},nef{rn+4,...,L}}, 27)
Yi={nkOlke{to+ (G- ... T—(m—j+ 1D}, L e{k+s,....T;— (m— j)d},
ne{t+46, ..., 4}}, Vie{2,...,m}, (28)
O, ={nk O |ke{to+(G—-D6, ..., Ti—m—j+ 18}, Lelk+s,...,T,— (m— j)b},
nef{t+546,...,k}}, Vjie{2,...,m}. (29)
According to Constraint (18f), for screening i € {1, ..., m},
the screening times are greater than 7o in (20). For screening
j e ({l,...,m},T'j defines the set of ages n such that the cancer j
onset starts in age interval [n — 8, n). We define the set of pos- ZM: = Z Pr(D;j)y!,
sible values of consecutive screening tests (7o, 7;) in (22) and ! i1
(tj-1, Tj) in (23), in which 7, is a fixed parameter. Variables xlj‘.‘Z Vief{l,....m), ne{t+56, ..., T}, (35)
are defined to replace variables z;, j=1,...,m, in the non- i1
linear model and represent a screening policy in the equivalent M =371 — )iy
linearized model. More specifically, variable xf’l is equal to 1 if pn P l
the screening time for screenings i — 1 and i are equal to k and Vie{2,....omhnef{n+s. ..., T} (36)
¢, respectively. To ensure that variables Kt represent a unique m
screening policy, the following constraints should be imposed in MB _ Z(l — o)y,
the model. ! P :
Z X']I(-Y[Zl, V]e{l,,m}, (30) VHE{‘[O-F(S,...,TS}. (37)
(kOEA; The term Pr(D;;)/Pr(D;)y! defines the probability of detect-
Z x’J‘ "= Z x;’_’fl, Vief{l,...,m}, neTl}, ing cancer in the j® screening, given that cancer onset occurs
(km)eA,; G in time [n—§,n) € [ti_1, ;] and the cancer is eventually

(31)

where (30) ensures that exactly one testing time is assigned to
each screening and (31) implies that the ending point of the j —
1™ screening interval is the beginning point of the j screening
interval.

Based on the definition, variable y! is equal to 1ifn € {r,_; +
8, ..., 7;} is a number between screening times 7,_; and t;, and
A, defines the set of all possible times for two consecutive
screening tests (7i_1, 7;) such that 7;_; is smaller than n, and 7;
is equal to or greater than n. Therefore, we have

no__ k.l
Vi = E, Xi s

(k.)€
yi=0,Vie{l,...,m}, ne{rn+34, ..., T} \ T (33)

Vie{l,...,m}, nel;, (32)

detected. Because cancer onsets at different intervals are mutu-
ally exclusive, Equation (34) calculates z;’:{. Similarly, Equa-
tions (35), (36) and (37) calculate values of z?’[,f , z?’[f and zMB,
respectively.

Note that parameters Q%¢, RE¢ and UK do not carry
out index j, because they are only dependent on the can-
cer onset and the screening times for the current and previ-

ous screenings. Define parameters Q%¢, Rb¢, UK¢, and VF* as
follows:

Qk :/" fT(t),s(t,k,e)y(t,k,e)/ooggT(s,t),HgF(s)dsdt,
n—48 0



VkE{To,...,

n 14
Ukt = / / g — Kk, DBt K, wyvs (w)dudt,
n—38 Jk

T—8), telk+s,....,Thne{n+s ..., 0.

(40)

Vke{tg+6,....,T,—38}, Lelk+3d,...,T},ne{tn+46,...,k}.
ylma :/n /+ goyr(u— €, OB, u, O)vy(w)dudt, (41)
Ve e {:;:fs,...,n},ne {to+6,...,6).
yhe — /éfT(t)/[gélT(u —t)B(t, k, u)vy(u)dudt,
Vkek{to,...,th}, Le{fk+8, ..., T}U{tan )} (42)

In the following, we rewrite the cancer overdiagnosis and
mortality risks derived in Sections 2.1.1 and 2.1.2 in terms of
the new decision variables defined in this section. For the over-
diagnosis risk, using Equations (30) and (38), the probability of
overdiagnosis for the j screening when the cancer onset is in
[n — 8, n) can be written as

/ OB Ty € 5, T)

X/O g§|T(5at)~HfF(S)dsdt= Z Qi

(k,0)€A;

Vie{l,...,m}, neT; (43)

The following shows the cancer overdiagnosis risk €2, the
mortality risk for the first case ®- 1, and the elements of the mor-
tality risk for the second case (v, and ) in terms of the new
decision variables and parameters. For more details, please refer
to Appendices A to C.

=Y Y gy (44)
=1 (n,k,0e;
k. kK MF

0u=Y ¥ B : (45)
=1 (n,k,0)e;
Z Z Uk/z ke MS+ Z U@rmﬂxké MB
j=2 (nkL)ed; (n,k, L)€y,

(46)

m

Yy = Z Z Vk’zx];-’l—i— Z vkt (47)

j=1 (k.0)eA; (k,0)eA,

Therefore, Model (19) can be rewritten in terms of the new
decision variables as

mmag@ > aieaa)

j=1 (n,k,0)eY;
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+a(_)(2m: Z Rﬁ,é ljce MF+Z Z U” ljce MS

j=1 (n,k,0)€Y; j=2 (n,k,0)e®;

+ Z UZTerlka MB+Z Z sz kl

(n,k,)ET,, j=1 (k0ea,;
n Z Vl’r’"“xlf,;e>, (48a)
(k,0)eA,,
st.abCef0,1), Vie(l,...,m), (k) €A, (48b)
2, >0, Vjie{l,...,m}, neT;, v e{OV, MF},
(48¢)
2% >0, Vie(2,...,m}, neT, (48d)
2B >0, VneT,, (48e)

Constraints (18c)-(18g) and Constraints (30)-(37).

Model (48) is still nonlinear. We now linearize Constraints
(18¢) to (18g) as follows:

k, —
> ol (= k) — > K-k =¢f ¢,
(k.£)eA (k.0)eA;
Vie{l,...,m—1}, (49)
e].+ 5Mdj+, Vie{l,...,m—1}, (50)
ej_SMdj_, Vie{l,...,m—1}, (51)
d}+d;= Vief{l,...,m—1}, (52)
(ej++ej—) < MI;, Vief{l,...,m—1}, (53)
I 5M(e}+e;), Vief{l,...,m—1}, (54)
m—1
Y L <N, (55)
j=1
df,d;, I; € {0, 1}, Vie{l,...,m—1)}, (56)
e;r,ej—zo, Vief{l,...,m—1}, (57)

where Z(u)eAj x’;‘e(ﬂ—k) in Equation (49) is equal to
Tj — Tj_1. The absolute value of |(tj4; — 7j) — (rj — 7j-1)| =
e}r +e; is calculated in Equations (49) to (52). Since ej+,
€; and (e;r +e]7) are less than or equal to [(Tj4; — Tj) —
('L'j — Tj,1)| < Tm4+1 — Tp, WE define M = Tmt+1 — To, 1N which,
as defined in Section 2.1, 7ty and 7,4 are fixed parame-
ters denoting the beginning and end points of the follow-

up horizon. We also use variables w?’ Kt = x’; ezj . (€
{OV, MF, MS}) to linearize xlj Zz] , and wMB kt = x” MB to
linearize x%¢zM® in Objective (48a). Noting that 2, < 1, v e
{OV, MF, MS}, and Z%B < 1, the mixed integer linear model is

given by
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ag (i Z Qﬁvéw?xk,z) +a(_)<2m: Z Rﬁ,éw?j[:,k,e

m
ke, MS k¢
2 ) Utep

min
j=1 (nk0)eT; j=1 (ke =2 (nkb)e,
m
CY e 3 S v S v s
(nEDeT, =1 (kOea; (ke

stowiyt < 1 Viefl,....,m}, (n,k £) € Yj, v € {OV, MF}, (350)
wl]?”i{:’e E Z;,Vl’ V] S {17 LR ] m}’ (n9 k7 E) € T]’ v e {OV7 MF}’ (SSC)
it = 2, = =20, Vj€(l,....m), (nk €) €Y, v €OV, MF}, 50
iyt =0, Vjie{l....m}, (n.k £) €Y) ve{OV,MF}, 550
wih < ot Vie2,...,m), (nkt) ed, (580)
wintt < 2% Vie{2,....m}, (n k)€ P (%)
Wit 2 A% - -, Vie@ . ..m (ko) ew, e
Wit = 0, Vi€l ...m), (nkt)ed, G50
wnMB,k,l < xl:r,li, Y(n, k, £) € Yy, (>8))
wﬂMB,k,l < ZnMB’ Y(n, k,£) € Yy, (58)
wnMB,k,lZ > MB_(1— x’:f), Y(n,k, L) € Tp, (581
szB'k’[ >0, Y(n, k,£) €Y, (58m)

Constraints (30)-(37), Constraints (48b)-(48e), and Constraints (49)-(57).

3. Model input

The probability distribution of breast cancer onset is the most
challenging distribution to estimate in this study, since cancer
onset cannot be observed or measured directly. Parmigiani and
Skates (2001) developed a de-convolution method to estimate
the age of disease onset distribution based on the natural his-
tory of the disease, the disease incidence rate, competing causes
of death, etc. They then used the singular value decomposition
method to solve their developed model numerically. The breast
cancer preclinical onset age distribution is calculated using the
exact calculation method of Parmigiani and Skate.

There are various studies in the literature estimating the dis-
tribution of breast cancer sojourn time. Some of these stud-
ies used an exponential specification in estimating the sojourn
time distributions (Duffy et al., 1997; Shen and Zelen, 2001,
2005; Tabar et al., 2000). However, the assumption of an expo-
nential duration in the preclinical stage has some limitations.
The first concern is the implausible assumption of mode at
zero, which corresponds to an instant transition from preclin-
ical to clinical stage, and the fast decaying tail, which does not
adequately account for slow-growing tumors (Parmigiani and
Skates, 2001). The second limitation is due to the memoryless
property of the exponential distribution, which implies that the
sojourn time and remaining sojourn time upon cancer detection
through screening have the same distribution. In other words,
the hazard function of sojourn time is constant, implying that, as
time passes, the instantaneous probability that the cancer devel-
ops to a clinical stage is constant. However, it would be more
plausible that the instantaneous probability of developing to a
clinical stage be a non-monotonic function of time. A second
distribution proposed for modeling cancer sojourn time is the

lognormal distribution. Spratt et al. (1986) postulated a lognor-
mal distribution for sojourn time based on the growth patterns
of breast tumors. In this study, we examine both exponential
and lognormal sojourn time distributions. For the exponential
case, the age-specific (age groups of 40-49, 50-59, 60+) rate
parameters are adopted from the mean sojourn time provided
in Duffy et al. (1997), Shen and Zelen (2001, 2005), and Tabar
et al. (2000). For the case with lognormal sojourn time, the age-
specific distribution parameters are estimated using the median
and upper 95% quantile matching Peer et al. (1993). Note that
the mean sojourn times for the exponential distributions are
very close to the mean sojourn times of the lognormal distri-
butions for all the age groups considered. The estimated mean
sojourn time for the three age groups of 40-49, 50-59, and 60+
are respectively 3.2, 4.7, and 5.2 for the exponential case, and 2.9,
4.5, and 5.9 for the lognormal case. The estimated hazard func-
tions of lognormal breast cancer sojourn time for the three age
groups (40-49, 50-59, 60+) are presented in Fig. 3. As the results
show, the hazard functions for this case are increasing at first
and start decreasing slowly a few years after the cancer onset.
This suggests that if no symptom appears by a certain amount
of time after the cancer onset, then the instantaneous probability
that the cancer actually becomes symptomatic starts to decrease
(because the tumor stops growing or it regresses).

The probability distribution of the remaining life years for a
cancer-free individual is extracted from the 2008 US life table
for females (Centers for Disease Control and Prevention, 2012)
and the Surveillance, Epidemiology and End Results (SEER)
data (National Concer Institute, 2015). SEER data are used to
exclude the probability of death from breast cancer in the life
table and adjust the probabilities for women without breast
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Figure 3. Estimated lognormal breast cancer sojourn time for different age groups.

cancer. We estimate the probability density of remaining life
years for the two cases of cancer detection (screen-detected and
symptomatic breast cancer) using the data available in Schairer
etal. (2004) and Zhang (2011). They reported the survival prob-
abilities of patients for four different breast cancer stages: in situ,
localized, regional and distant breast cancer. We adopt the stage
distributions of screen-detected and symptomatic breast cancer
from Bleyer and Welch (2012) and Plevritis et al. (2007), respec-
tively, and adjust the probability density of remaining life years
for the two cases. For example, let q§ be the probability that a
patient is in state £ and is diagnosed with a cancer in stage j
(where j € ] ={in situ, localized, regional, distant}), and pi i be
the probability that an individual of age i who is in state £ and
cancer stage of j dies in the age interval (7, i 4+ 1]. Therefore, the
probability that an individual of age i and in state £ dies in the
age interval (4, i + 1] is

pi=)_d;p; (59)

jel

The mortality probabilities in CDC (n.d.), Schairer et al.
(2004) and Zhang (2011) are presented in tabular format, and
therefore we used a piecewise-constant density function to

Table 1. Data sources for the model input estimations.
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model the probability density functions. Let p? be the proba-
bility that an individual of age i in health state £ dies in the age
interval (i, i + 1]. Therefore,

Pr(RE <k)=1-]]a - p). (60)
i<k
and
() = Pr(RE <k+1)— I.Dr(RS < k)’
J Pr(R¢ > j)
Vk<r<k+1, k> j. (61)

Lastly, age-specific mammography screening sensitivities are
extracted from Kerlikowske et al. (2000). Table 1 presents the
summary of data sources for the different inputs (parameters
and distributions) incorporated in the model.

4, Results

Disease onset and conditional remaining life year functions do
not have a general closed form and are only available in tabu-
lar format. This makes analytical calculation of integration chal-
lenging, especially when the sojourn time follows a lognormal
distribution. Therefore, in this study, we exploit the Monte Carlo
integration method to calculate the integrations in the proposed
model. Monte Carlo integration methods are sampling methods
to calculate complicated integrations, based on the central limit
theorem and the law of large numbers. Please refer to Robert and
Casella (2013) for more details.

To validate the models, the probabilities of developing breast
cancer in the next 10 years and breast cancer mortality risks cal-
culated by the model are compared with those reported by the
American Cancer Society (ACS). We compared the age-adjusted
incidence rates in the model with the rates reported by the ACS
(n.d.). Table 2 presents the 10-year incidence likelihood for dif-
ferent age groups based on our model (calculated based on esti-
mated fr) and the ACS report. Note that the ACS reports the
incidence likelihood in the next 10 years for the general popu-
lation. However, in our model we focus on the population with
breast cancer; i.e., the probability of cancer onset in a 10-year
time window for a patient, given that she develops breast cancer
in her lifetime. Therefore, the probabilities reported by the ACS

Description Notation/Parameter Reference
Distribution of preclinical detectable breast f() Parmigiani and Skates (2001)

cancer onset
Preclinical sojourn time distribution (exponential A Shen and Zelen (2001, 2005), and Tabar et al. (2000)

case) parameters (mean of S)

Preclinical sojourn time distribution (lognormal nw,o
case) parameters (mean and standard
deviation of S)

Probability density of remaining life years of a hSF
cancer-free individual

Age- and stage—specific probability distribution hs¢, hee
of death from breast cancer

Stage distribution of breast cancers q‘?

Age-specific mammography sensitivity a;

Peer et al. (1993)

The US life table for females Centers for Disease Control and Prevention (2012), and
SEER National Concer Institute (2012)
Schairer et al. (2004) and Zhang (2011)

Bleyer and Welch (2012) (screen-detected cancers), Plevritis et al. (2007) (clinically
detected cancers)
Kerlikowske et al. (2000)
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Table 2. Comparison of age-adjusted incidence rate of the model and the ACS data.

The probability of developing BC in the next 10 years

Population with BC General Population

Age ACS Model ACS Model
40 0.110 0.109 0.014 0.013
50 0.184 0.182 0.023 0.023
60 0.280 0.278 0.035 0.034
70 0312 0310 0.039 0.038

(fifth column) are normalized by the lifetime chance of devel-
oping breast cancer (1 in 8) to calculate the associated probabil-
ities for the population with breast cancer (second column). As
the results show, the estimated onsets are very close to the data
provided by the ACS. In addition, we compared our estimated
breast cancer mortality risk with the the survival rates reported
by the ACS (2015). Based on the ACS report, the mortality rate
(survival rate) for women diagnosed with breast cancer after 15
years is 22% (78%), which is comparable with the lifetime mor-
tality risks calculated in our model. For more details, please refer
to Section 4.1.

The results presented in this section have two parts. In the
first part, we evaluate different screening policies, in terms of
the breast cancer overdiagnosis and mortality risks. The second
part presents the optimal screening policies obtained.

4.1. Policy evaluation

In this section, we present the cancer overdiagnosis and lifetime
mortality risks of different policies. We evaluate different static
as well as dynamic screening policies. We consider two types of
dynamic policies with one and two switching ages. In dynamic
policies with one switching age (one-switch policies), a patient
starts with one screening interval and then switches to another
screening interval at the switching age. Similarly, for policies
with two switching ages (two-switch policies), a patient switches
the screening frequency at two points in her life.

The two most commonly referred mammography screen-
ing policies are the American Cancer Society (ACS) and the
US Preventive Services Task Force (USPSTF) policies. Previ-
ously, the ACS recommended annual screening mammography,
beginning at age 40. Recently, the ACS has changed the breast
cancer screening guidelines. In the new ACS policy, women are
recommended to receive annual mammograms between ages 45
to 54 and switch to getting mammograms every two years after-
ward. Based on the new ACS policy, the screening should con-
tinue as long as a woman is in good health and is expected to
live 10 more years or longer. According to the USPSTF guide-
line, screening mammograms should be done every two years
between age 50 and 74 for women at average risk of breast cancer.

Table 3 presents the policies evaluated in this study. Since
the new ACS policy does not specify an age to stop screening,

we consider three variations of the new ACS policy with stop-
ping ages of 80, 90, and 100. Including the USPSTF policy and
the three variations of the new ACS policy, in total we evalu-
ate 244 policies. We use vectors of length three, five, and seven
to represent static, one-switch policies, and two-switch policies,
respectively. Static policies are presented by (as, i1, g.), in which
as, and a, are the starting and ending age, respectively, and i; is
the screening interval length. Policies with two screening inter-
vals (one-switch policies) are represented by (as, i1, a1, iz, d.),
where g, and a, are defined the same as above; a; is the age that
the patient switches from one interval to another; and i; and i,
represent the first and second screening intervals, respectively.
Similarly, (as, i1, a1, iz, a2, i3, a.) represents a policy with three
screening intervals (two-switch policies) where a,, i1, a2, i, a.
are defined, same as above and a,, and i3 represent the second
switching age and the length of third screening interval, respec-
tively. For example, policy (40,1,50,2,60,3,80) recommends that
women receive annual screening tests between age 40 and 50,
then switch to biennial screenings up to age 60, and continue
screenings every three years up to age 80. Note that the old
ACS policy, the USPSTF policy and the three variations of
the new ACS policies are represented as (40,1,100), (50,2,74),
(45,1,54,2,80), (45,1,54,2,90), and (45,1,54,2,100), respectively.

Figure 4 presents the breast cancer overdiagnosis and mortal-
ity risks of the policies considered in this article along with the
efficient frontier policies for the case with (a) exponential and (b)
lognormal sojourn time distributions. Efficient frontier policies
are policies for which overdiagnosis (mortality) risk cannot be
improved in value without degrading the mortality (overdiag-
nosis) risk.

Note that the policies, associated overdiagnosis risks are
slightly different for the two cases of exponential and lognor-
mal sojourn time with overdiagnosis risk of the lognormal case
being slightly higher. Although slightly different, the overdiag-
nosis risks for the two distributions are close. In addition, the
mortality risk for the lognormal case is smaller than the cor-
responding mortality risk for the exponential case. This is due
to the memoryless property of exponential case and the non-
monotone behavior of lognormal sojourn time hazard function.
In the lognormal sojourn time case, as discussed earlier, if a can-
cer is not symptomatic for an amount of time after its preclin-
ical onset, the probability of instantaneous symptomatic cancer
decreases with time, which implies that the probability that the
cancer does not grow to a symptomatic size is higher, resulting
in a higher overdiagnosis risk and a lower mortality risk. For
example, suppose that the cancer preclinical onset is at age 50
and cancer sojourn time follows a lognormal distribution. In
such case, if the cancer is not detected (either through screening
or symptoms) within the next four years, the probability that it
grows to symptomatic size afterwards decreases. However, if the
sojourn time is exponential and the cancer is not detected up to
age a, the probability that cancer becomes symptomatic at any

Table 3. Screening policies considered in the numerical analysis: a , and a, are the starting and stopping ages; iy, i,, and i are the screening interval lengths; and a, and

a, are the interval length switching ages.

Policy as il iz a i3 ae

Static 40,50 123 — — — 80,90,100
Dynamic (one-switch policies) 40,50 12,3 50,60,70 123 — — 80,90,100
Dynamic (two—switch policies) 40,50 12,3 50,60,70 123 60,70,80 123 80,90,100
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Figure 4. Breast cancer overdiagnosis and mortality risks of the screening policies in Table 3.

age afterwards is constant, regardless of the time that has passed
since the cancer onset. Therefore, the overdiagnosis and mor-
tality risks in lognormal sojourn time case are higher and lower,
respectively.

The overdiagnosis risks for both distributions are com-
parable with the reported values in the literature (Duffy and
Parmar, 2013; De Gelder et al., 2011; Gunsoy et al., 2014). The
overdiagnosis risk estimates for biennial screening schedules
are in line with the values reported in the literature: Duffy and
Parmar (2013) estimate 7-8%, and De Gelder’s estimates 7.2%,
De Gelder et al. (2011). In addition, our result is in line with
Gunsoy’s estimate of 5.6% for triennial screening strategies
(Gunsoy et al, 2014). The breast cancer mortality risks are
also comparable with the ACS report (2015). Based on the
ACS report, the 10-year and 15-year survival rate of breast
cancer patients are 83% and 78%, respectively, suggesting about
17% and 22% risk of mortality in 10 and 15 years after detec-
tion, which are in line with our results. Note that our results
present the risks for the population of individuals with breast
cancer (given that the patient develops breast cancer in her
lifetime).

The results in Fig. 4 show that the old ACS policy and the
USPSTF policy are among efficient frontier policies for both
exponential and lognormal sojourn time cases. In fact, the USP-
STF policy and the old ACS policy have the lowest overdiagno-
sis and breast cancer mortality risk among the evaluated policies,
respectively. Most of the efficient frontier policies (except for the
old ACS and (40,1,90)) recommend that women stop screen-
ing at or before age 80. This is because, after age 80, the prob-
ability of death from competing causes significantly increases,
which results in high overdiagnosis risk. In addition, most effi-
cient policies (except for the USPSTF) recommend women that
start screenings at age 40. This maintains both the overdiagnosis
and mortality risks at a lower level. In addition, in terms of the
distribution of screening tests in the efficient frontier policies,
more frequent tests are recommended in the age interval 40 to
60 when breast cancer onset is more likely.

4.2. Optimization results

In this section, we present the optimal policies extracted for
two different decision horizons of age of 40 to 80, and 45 to
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80. The starting age of 40 is considered (7o = 39), since it is
the earliest age among the recommended starting ages for rou-
tine mammography screening and the likelihood of developing
breast cancer prior to age 40 is very low (1 in 1899 (American
Cancer Society, 2015)). We also consider possible starting age of
45, as it is recommended by the new ACS policy, updated in late
2015. We also assume that the latest age a patient can undergo
screening (T;) is 80 since, based on a previous study, screening
women over the age of 80 would cause more harms than benefits
(Schonberg et al., 2009). In addition, a patient’s life expectancy
drops drastically after this age and therefore the probability of
overdiagnosis increases. Note that in our analysis 7,,4; = 100,
since the patient is followed up to age 100 to calculate her breast
cancer mortality risk. In our optimization analysis, the mam-
mography sensitivity is assumed to be independent of age, and
its value is calculated as the weighted average of age-dependent
sensitivity values used in Section 4.1. We also assume the mini-
mum interval between two subsequent mammograms should be
more than one year (§ = 1 year) and the number of times a pol-
icy can switch between screening intervals is limited to two (i.e.,
N=2). We vary the overdiagnosis risk weight (ag) and mortality
risk weight (ag) from 0 to 1 with 0.1 increments (ag + ag = 1).
Therefore, the decision maker can choose the optimal policy
based on his/her preference on the overdiagnosis and mortality
risk weights.

A server with an Intel core 132 with 3.1 GHzand 768 GB RAM
and CPLEX 12.4 is used to solve the mixed integer programming
models to optimality. Note that the computational time for each
individual problem with a fixed number of screenings m is no
more than five hours.

4.2.1. Numerical results

The optimal policies along with the associated overdiagnosis
(2¥) and breast cancer mortality risks (®%) are presented in
Tables 4 through 7. Note that, in Tables 4 through 7, a shaded cell
represents a recommended mammography screening while an
empty cell represents “no screening” The results are presented
for different combinations of ag and ag in range 0.1 to 0.9. Note
that for the case when aq = 1, the optimal policy is “no screen-
ing,” which results in the overdiagnosis risk of zero and mor-
tality risks of 0.33, and 0.34 for the exponential and lognormal
case, respectively. In addition, in the case of ag = 1, the optimal
policy is screening every year over the decision horizon, which
results in the minimal breast cancer mortality risks.

Tables 4 and 5 present the optimal policies for the exponen-
tial sojourn time case for the two decision horizons of 40-80
and 45-80, respectively. Note that the solving time of Model (58)
depends on 7y and 7,,4;. In practice, we are interested to study
screenings where 75 > 39 and 7,1 < 100. In the following, we
show that Cplex is able to solve Model (58) efficiently for 7, = 39
and t,,+1 = 100, so we are able to solve the problem efficiently
for the practical values of cancer screening. The optimal poli-
cies have similar structures for both decision horizons and also
across different risk weights. The optimal policies recommend
more frequent mammograms at younger ages and no mammo-
gram screenings as the patients get older. All screening policies
recommend starting annual screenings at age 40, and the stop-
ping age depends on the two risks associated weights. As ag

Table 4. Optimal policies: Exponential sojourn time case between age 40 to 80.

Policy
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Table 7. Optimal policies: Lognormal sojourn time case between age 45 to 80.

Policy
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increases, fewer screenings (m) are recommended, and screen-
ings are scheduled at younger ages to avoid overdiagnosis. This
is intuitively correct, since the probability of death from a com-
peting cause and, as a result, the likelihood of overdiagnosis is
lower at younger ages. However, as ag increases, more screen-
ing tests are prescribed to detect the cancer through screening
and prevent symptomatic cancer that is associated with higher
breast cancer mortality risk. In addition, as the results show,
the overdiagnosis and breast cancer mortality risks increase
and decrease, respectively, as the number of screenings and ag
increases.

Tables 6 and 7 present the results for the decision horizon of
40 to 80 and 45 to 80, respectively, where the sojourn time fol-
lows alognormal distribution. As the results suggest, the optimal
policies, structures are very similar to the exponential case, with
more frequent screenings at the beginning and more spread-out
mammograms at older ages. In addition, the optimal numbers of
screenings m* for the lognormal case are very similar to those in
the exponential case across different weight combinations (e.g.,
m™* = 30 for the exponential case vs. m* = 31 for the lognormal
case when ag = ag = 0.5 for the decision horizon of 40 to 80.)
However, in the lognormal case, the stopping screening age
tends to be larger, specially when ag > 0.5 (t,, = 77 vs. 7, = 80
for exponential and lognormal, respectively, when ag = 0.7).
This translates to less frequent (e.g., biennial) screenings toward
the end of the decision horizon. This happens due to the
characteristics of exponential and lognormal distributions. As
discussed earlier, exponential distribution mode at zero implies
an instant transition from preclinical to clinical stage, which is
not realistic. This implies that when the sojourn time is expo-
nentially distributed, the probability that the cancer transitions
from its preclinical onset to clinical stage (become symp-
tomatic) within one year is 19% on average. This value is 3% for
the case of lognormal distribution. Note that these probabilities
are calculated as the weighted average of the probabilities of
transitioning to the clinical stage within one year of cancer onset
for different age groups, with the weights being the proportion
of the US population in the associated age groups. In addition,
the memoryless property of exponential distribution implies
a constant probability of instantaneous symptomatic cancer.
Therefore, the probability that a cancer becomes symptomatic
remains the same throughout the patient’s life. However, in the
lognormal case, as discussed earlier, the hazard functions are
increasing at first but start decreasing after some time, implying
that if a cancer is not symptomatic after a while, its proba-
bility of becoming symptomatic decreases. These properties
imply that a patient should undergo mammogram screenings
more frequently in order to catch cancer through screening to
decrease cancer mortality risk when sojourn time is exponen-
tially distributed. However, in the case of lognormal sojourn
time, since the probability of cancer becoming symptomatic
decreases after some time, the screenings are more spread
out.

5. Conclusion

Preventive health services with advanced technologies, although
known to detect diseases in early stages when patients are more



likely to be successfully treated, have ignited a debate on over-
diagnosis. Ideally, screening interventions aim to detect diseases
that will ultimately cause harm, and the purpose of screening
interventions is to advance the detection time, when the dis-
ease is in its early stages and is more likely to be treated. How-
ever, there is always the risk of overdiagnosis and overtreat-
ment when detecting a disease in its early stages. Overdiag-
nosis of a disease is defined as the diagnosis of an asymp-
tomatic disease having no signs or symptoms, which would have
never become symptomatic during an individual’s remaining
lifetime.

In this study, we derive the equations for the probabil-
ity of lifetime breast cancer overdiagnosis and mortality risks.
Although applied to breast cancer, the proposed model can be
generalized to calculate risks for other types of cancer. We eval-
uate the lifetime overdiagnosis and mortality risks associated
with in-practice and alternative mammography screening poli-
cies, including the old and new ACS and the USPSTF policies.
In addition, we derive optimal screening policies with minimum
linear combination of overdiagnosis and mortality risk. The ini-
tial optimization model is nonlinear and very complex to solve
optimally. Therefore, we restructure the initial model by intro-
ducing new decision variables and linearizing the model. The
optimization results imply that more frequent screenings should
be performed at younger ages and few to no mammogram test-s
at older ages.

There are some limitations and future research directions for
this study. First, there is no universal agreement on the sojourn
time distribution. More clinical and statistical research on
finding the sojourn time would help quantify the overdiagnosis
risk more accurately. As limitation on the available data sources
can cause some ambiguity and inconsistency in the parameter
estimates, robust optimization can be applied in the future to
ensure that the optimal policies are robust against this limita-
tion. In addition, in this study, the optimal policies are derived
at the population level. A future direction would be to optimize
screening policies at the individual level. A multi-stage stochas-
tic programming model or Markov decision process could be
developed that depends on the status of the individual and
the data received at each screening. In the current model, we
assume that mammography sensitivity is fixed in contrast with
the fact that the sensitivity increases as women age. A possible
future direction would be to consider age-dependent mammog-
raphy sensitivity. Implementing this, however, requires a major
restructure of the optimization model presented here. Note
that the dynamics of sensitivity have already been incorporated
in the estimation models but not in the optimization model.
Another possible direction would be to investigate the impact
of overdiagnosis on a patient’s quality of life (e.g., QALYs) by
quantifying the physical, psychosocial and economic harms
that overdiagnosis causes. In addition, overdiagnosis risk is a
function of the stage at which the cancer is detected. In this
study, we do not incorporate different breast cancer stages in the
overdiagnosis calculation. A very interesting future direction
would be to investigate overdiagnosis risk as a function of the
stage of a detected cancer. Moreover, in this study, we assume
perfect adherence to screening guidelines, which results in over-
estimation of overdiagnosis risk. A possible future direction
would be incorporation of uncertainty in patient’s adherence
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since, in reality, patients do not comply with cancer screening
policies completely.
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where we change the order of summations over i and j in Equation (62). Moreover, Equation (63) is valid because of the definition
of variable y!'; Equations (64) and (65) follow from (33) and the definition of z%’, respectively. Equation (66) follows from (33) and

the fact that I'; C T'}, the first and second equalities of (67), follow from Equation (43), and the definition of set Y, respectively.

Appendix B: Proof of Equation (45)

'rl :ZZPT(DZ])U / fT(t),B(t Tj— 1,T]))/(t Tj— 1,T])dt

j=1 i=1

—ZZMD,)Z(W / fr®BE Tio, Ty (¢t Tjm l,r,)dt>y,,

j=1 i=1

mo
= ZZPr(Dij)

j=1 i=1 qe{to+5.... T.}

nel’;

4
(vf’ / IRACLICLARACL/A fﬂdf) 3

(68)

(69)

(70)
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i q
= Z Z z?’qu <vlff/ afT(t)ﬂ(t, T, )Yt T, 'Cj)dl‘), (71)
; o

m q
ME [ T
=> > (v; / frOB iy, Ty (t T, rj>dt), (72)
J=1 geT; a
m
_ MF ke ke _ Kty kz LMF
- Z Zjaq Z Rq X Z Z R Zjq> (73)
=1 geT; (k,0)eA, j=1 (q.k.0)eT;

where the orders of summations over i and j are changed in Equation (68); Equation (69) follows from the definition of variable

y#; Equation (70) holds because of (33); Equation (71) follows from the definition of M ias F: Equation (72) holds because of (33) and

I c T j> the second equality of (73) results from the definition of Y';; and the first equality of (73) holds because

o[ —
vy / s frOBt. Tyt tdt = Y RE‘A, Vie(l,...,m), qeT, (74)
- (k0)eh;

where Equation (74) follows from (30).

Appendix C: Proof of Equation (46) and (47)

m+l j

V= Z Z(l —a)l” l/ / gS|T —Tji_1, OB, Tj—1, wvy (u)dudt, (75)
j=2 i=1
m+1 j ‘
= Z Z(l —a)™ z (/ / géIT (u— i1, B, Tj—1, u)vz(u)dudt> v, (76)
j=2 i=1 nerl;
m+1l j o q 5
= Z Z(l —a)™ Z (f gé;Tl(u — Tj_L, DB, T, u)vz(u)dudt> v, (77)
j=2 i=1 gelto+s,.., T} \Y470JTjx1
= Zzi\/[qs (/ / gs\T (u— Tj-1, t)B(t, Ti-1, u)vz(u)dudt)
j=2 qe {ro+8 ..... -
+ Z zg’IB (/ / mt1 gg'l'T(u — T, DB, T, u)vz(u)dudt) s (78)
qe{to+4,...,T;} =8 J1
= 9 LT
=244 D (/ / &=t DB T, u)vz(u)dudt)
j=2 P q—38 J iy
q Tm+1
+ Z ZEJ\/IB (/ s 8§'\IT(“ — Tm, t)ﬂ(ty Tms u)vz(u)dudt> y (79)
qEFm q9- Tm

ST Y Y Uk Y am Y g &0
j=2

geT;_, (kO)EA, 4T, (kDEA,

— Z Z Uklel MS_I_ Z U@ 'L',,H_lxkl MB (81)

j=2 (q.,k,0)e®; (q.k, )€Yy,

where we change the order of summations over i and j in Equation (75); Equation (76) results from the definition of variable y!;
Equation (77) results from (33); Equation (78) follows from the definition of z?f[qs and zg’[B. Equation (79) is correct because of (33)

andI'; C Fj; and Equation (80) is valid because
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a [t
/ / : gg‘_Tl (u—tj_1,)BE, Tj_1, vy (w)dudt = Z U;’Exk-’g, Vief{2,...,m}, q¢€ Fj_l, (82)
q—38 Jtj (k,O)eA;
q Tm+1 —_
/ gsjr (U — T, ) B(E, T, w)v2 (w)dudt = Z U;”"‘“x’:,;e, Vg ey, (83)
q=8 St (k,&)EA,
where Equations (82) and (83) follow from (30).
For v, we have
m
Yo=Y VELREL Ny ikl (84)
j=1 (k,0)eA, (k0)eA,

which holds because of the definition of parameter V** and because

| 7© [ o= gt n wmodudt = 30 VR Vie (L, (85)
Ti-1 t (k,£)eA;
/m @ [ @ = 0B T s (wdudt = Y VI (86)
T t (k,£)eA,,

where Equations (85) and (86) follow from (30).
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